Skip to contents

Check if an object is an instance of a specific 'Metabodecon Class'. See Metabodecon Classes for a list of classes.

Usage

is_spectrum(x, check_class = TRUE, check_contents = FALSE)

is_decon0(x)

is_decon1(x)

is_decon2(x)

is_align(x)

is_spectra(
  x,
  check_class = TRUE,
  check_contents = FALSE,
  check_child_classes = FALSE
)

is_decons0(x)

is_decons1(x)

is_decons2(x)

is_aligns(x)

Arguments

x

The object to check.

check_class

Logical indicating whether to check the class of the object.

check_contents

Logical indicating whether to check the contents of the object.

check_child_classes

Logical indicating whether to check the class of each element of the object.

Value

TRUE if the object is an instance of the specified class, otherwise FALSE.

Author

2024-2025 Tobias Schmidt: initial version.

Examples

ss <- sim[1:2]
s1 <- sim[[1]]
is_spectra(ss) # TRUE
#> [1] TRUE
is_spectrum(s1) # TRUE
#> [1] TRUE
is_spectrum(s1, check_contents = TRUE) # TRUE
#> [1] TRUE

dd <- deconvolute(ss, sfr = c(3.55, 3.35))
#> 2025-09-17 19:41:19.11 Starting deconvolution of 2 spectra using 1 worker
#> 2025-09-17 19:41:19.11 Starting deconvolution of sim_01
#> 2025-09-17 19:41:19.11 Removing water signal
#> 2025-09-17 19:41:19.11 Removing negative signals
#> 2025-09-17 19:41:19.11 Smoothing signals
#> 2025-09-17 19:41:19.11 Starting peak selection
#> 2025-09-17 19:41:19.11 Detected 314 peaks
#> 2025-09-17 19:41:19.11 Detected 314 peaks
#> 2025-09-17 19:41:19.11 Removing peaks with low scores
#> 2025-09-17 19:41:19.11 Removed 287 peaks
#> 2025-09-17 19:41:19.11 Initializing Lorentz curves
#> 2025-09-17 19:41:19.12 MSE at peak tiplet positions: 4.0838805770844048836921
#> 2025-09-17 19:41:19.12 Refining Lorentz Curves
#> 2025-09-17 19:41:19.12 MSE at peak tiplet positions: 0.1609359876216345797140
#> 2025-09-17 19:41:19.12 MSE at peak tiplet positions: 0.0228015051613790313556
#> 2025-09-17 19:41:19.13 MSE at peak tiplet positions: 0.0071638016610617799920
#> 2025-09-17 19:41:19.13 Formatting return object as decon2
#> 2025-09-17 19:41:19.13 Finished deconvolution of sim_01
#> 2025-09-17 19:41:19.13 Starting deconvolution of sim_02
#> 2025-09-17 19:41:19.13 Removing water signal
#> 2025-09-17 19:41:19.13 Removing negative signals
#> 2025-09-17 19:41:19.13 Smoothing signals
#> 2025-09-17 19:41:19.14 Starting peak selection
#> 2025-09-17 19:41:19.14 Detected 316 peaks
#> 2025-09-17 19:41:19.14 Detected 316 peaks
#> 2025-09-17 19:41:19.14 Removing peaks with low scores
#> 2025-09-17 19:41:19.14 Removed 286 peaks
#> 2025-09-17 19:41:19.14 Initializing Lorentz curves
#> 2025-09-17 19:41:19.14 MSE at peak tiplet positions: 3.8338943428876719465848
#> 2025-09-17 19:41:19.14 Refining Lorentz Curves
#> 2025-09-17 19:41:19.14 MSE at peak tiplet positions: 0.1289481941626757499630
#> 2025-09-17 19:41:19.14 MSE at peak tiplet positions: 0.0135651899090413786964
#> 2025-09-17 19:41:19.15 MSE at peak tiplet positions: 0.0025556755331531087749
#> 2025-09-17 19:41:19.15 Formatting return object as decon2
#> 2025-09-17 19:41:19.15 Finished deconvolution of sim_02
#> 2025-09-17 19:41:19.15 Finished deconvolution of 2 spectra in 0.046 secs
d1 <- dd[[1]]
is_decons0(dd) # FALSE
#> [1] FALSE
is_decons1(dd) # FALSE
#> [1] FALSE
is_decons2(dd) # TRUE
#> [1] TRUE
is_decon0(d1) # FALSE
#> [1] FALSE
is_decon1(d1) # FALSE
#> [1] FALSE
is_decon2(d1) # TRUE
#> [1] TRUE

if (interactive()) {
    # Example requires an interactive R session, because in case of missing
    # dependencies the user will be asked for confirmation to install them.
    aa <- align(dd)
    a1 <- aa[[1]]
    is_align(a1) # TRUE
    is_aligns(aa) # TRUE
}